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Netherlands 
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Abstract. We consider possible solutions of Smoluchowski’s coagulation equation if the 
rate constants K ( i ,  j )  behave as K ( i ,  j )  - iwj”  a s j +  CO, with an exponent v satisfying v > 1 .  
We find that, for such rate constants, Smoluchowski’s equation predicts the instantaneous 
occurrence of a gelation transition. Thus the gel time 1,=0 in such models. This result 
confirms recent speculation in the literature. We also study the structure of post-gel solutions 
of Smoluchowski’s equation, if they exist. For a given value of v, the results depend on 
the value of the exponent p. If p > ( Y - l ) ,  one finds that the cluster size distribution c , ( f )  
approaches a universal form at large times ( t - w ) .  No solutions exist if p s ( v - 1 ) .  
Physically this means that the sol phase is depleted instantaneously. 

1. Introduction 

The purpose of this paper is to show that Smoluchowski’s coagulation equation predicts 
the occurrence of a gelation transition within infinitesimal time for certain classes of 
rate constants. This result confirms recent speculation, based on analytical indications 
(Hendriks et a1 1982, Ziff 1984) and Monte Carlo simulations (Domilovskii er al 1978, 
Spouge 1985). 

Smoluchowski’s coagulation equation (for a review see Drake 1972 or Ernst 1986) 
is an infinite set of chemical rate equations for the cluster size distribution, i.e. for the 
concentrations c k ( t )  of clusters of size k, or k-mers (k  = 1 , 2 , .  . .). If the rate constant 
for the reaction of an i -  and j-mer is given by K (  i, j), then Smoluchowski’s equation 
has the following form: 

5 

C k ( f ) = f  2 K(i, j )c,(r)c,(t)-ck(r)  1 K(k,j)c,(t) .  (1.1) 
r + ] = k  ] = I  

The gain and loss term on the right describe the formation of k-mers out of smaller 
clusters and the loss of k-mers due to reactions with other polymers respectively. 

In recent years it has been noticed, e.g. by Lushnikov (1977a, b) and, more recently, 
by Ziff (1980), that, for certain choices of the rate constants, Smoluchowski’s equation 
predicts the occurrence of a gelation transition at a finite time r, (gel point). The gel 
point t ,  is marked by a divergence of the mean cluster size and by the onset of a mass 
flux from the finite-size clusters (sol particles) towards the clusters of infinite size or gel. 

The mass flux from the sol to the gel phase may be calculated as follows. Multiplica- 
tion of equation (1.1) with k and summation over all k s L gives an equation for the 
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mass flux J ( L ,  t )  from clusters of size k S L to clusters larger than L: 

J ( L ,  t )  = - ktk = c 2 i K ( i ,  j)c,c,. 
L L 

k = l  , = I  , = L - , + l  
(1.2) 

The flux towards the infinite clusters, i.e. the rate of gel formation, as is seen for 
instance in the exactly solvable model K ( i ,  j )  = ij (Ziff et af 1983), takes place as 
follows. In the pre-gel stage ( t  < t , ) ,  where the mean cluster size is finite and large 
clusters are relatively rare, one finds that the mass flux J ( L ,  t )  vanishes as L+m, i.e. 
J (m,  t )  = 0. It follows that for t < t ,  the sol mass is conserved (Z kik = 0) and is equal 
to the total mass M per unit volume: 

;c 

M ( t ) =  k c , ( t ) = M = l .  
k = l  

The constant M may be set equal to unity by an appropriate choice of the unit of 
volume. At the gel point t , ,  and in general for all t 3 t , ,  C k ( t )  falls off algebraically, 
in such a way that J (  L, t )  approaches a finite, non-vanishing limit as L + W. Thus, for 
t 3 t , ,  there exists a non-vanishing mass flux J ( w ,  t )  = -U(t)  from the sol to the gel 
phase and the conservation law (1.3) is replaced by 

M ( t ) + G ( t ) = l  (1.4) 

where G( t )  represents the mass of the gel. 
The possible occurrrence of a gelation transition within a finite time t ,  has been 

demonstrated for various special choices of the rate constants K (  i , j )  (see e.g. Hendriks 
et al 1982, Leyvraz and Tschudi 1983, Leyvraz 1983), and in general for homogeneous 
kernels K (ai, a j )  = a ' K  (i, j )  if the degree of homogeneity satisfies A > 1 (van Dongen 
and Ernst 19,85a, b, 1986a, b). White (1980) has shown that gelation does not occur 
if K ( i ,  j )  < ( i  + j )  for all i and j .  

Various authors have speculated that for certain forms of the reaction rates gelation 
may take place instantaneously ( t ,  = 0). Analytical arguments supporting this view 
have been given by Hendriks et af and by Ziff (1984). For rate contants K (  i, j )  = (ij)' 
and monodisperse initial conditions, C k ( 0 )  = &]  these authors consider the moments 
Ma( t )  3 Z;P,, j u c k (  t )  of the cluster size distribution. The second moment M2( t )  is then 
expanded in a Taylor series about t = 0 and the coefficients are calculated from the 
moment equations for Ma ( t ) .  Numerically this series appears to be divergent for all 
t > 0, and one concludes that 'the possibility remains that no pre-gelation solutions 
exist for the kernels K ( i ,  j )  = (U)" with w > 1' (Hendriks et af 1982). Similar con- 
clusions hold for K (  i , j )  = i" +j" with w > 1. 

Different evidence, supporting the possible occurrence of an instantaneous gelation 
transition, comes from Monte Carlo simulations of random coagulation processes. 
Domilovskii et al (1978) investigate the behaviour of a finite system, starting from 
monodisperse initial conditions, with K (  i, j )  = ( They find that their estimate of 
the gel time tends to zero as the system size is increased. Similarly, Spouge (1985) 
considers coagulation processes with K ( i ,  j )  = (U)" and w > 1, and he gives as a first 
conjecture that in such models gelation occurs instantaneously. 

This paper addresses the question of existence of instantaneous gelation in 
Smoluchowski's equation for certain choices of the rate constants. In order to simplify 
the discussion, we restrict ourselves to kernels K ( i ,  j )  that are homogeneous functions 
of the cluster sizes i and j and we introduce exponents p and U to specify the behaviour 
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of K ( i ,  j )  for j >> i :  

K (ai, aj) = a ’ K  ( i, j)  = a ” K  (j, i )  ( 1 . 5 ~ )  

K ( i ,  j) - i”j” j-t 03, i fixed; A = p + v. (1.56) 

On account of the restrictions ( 1 . 5 ~ )  and (1.56) imposed on K ( i ,  j), we may introduce 
a new function K(’)(i,j), as follows: 

(1.6) 

The kernel K“’( i, j )  has zero degree of homogeneity, K“’( ai, aj) = K‘”( i, j). Moreover, 
it follows from (1.56) that K“’( i ,  j)+ 1 as i / j + m  or 0. We assume that K(’’(i,j) is 
a continuous, non-vanishing function of i and j ,  such that for some positive constant 
K ,  : 

K (  i, j) = (U)’( i +j)”-pK(o’( i ,  j ) .  

K‘”( i, j) 2 K ,  > 0 i , j = 1 , 2  , . . . .  (1 .7)  

Some of our results will be valid also for non-homogeneous kernels, as will be discussed 
in 04.  

The main result of this paper is that instantaneous gelation occurs if and only if 
the exponent v, defined in (1.56), satisfies v > 1. Instantaneous gelation will certainly 
not occur if vs 1. For homogeneous kernels with vS 1 and A S 1 it follows from 
White’s theorem (White 1980) that gelation does not occur. Alternatively, if v S  1 and 
h > 1, gelation may occur, but there exists a non-vanishing lower bound on the gel 
time, implying that t,> 0 (van Dongen and Ernst 1986a). Since we are interested in 
the possible occurrence of instantaneous gelation, therefore, we consider only kernels 
K ( i ,  j )  with an exponent v > 1. 

It must be remarked that in physical systems, coagulation kernels with v >  1 do 
not occur. The reason is that the number of active sites on a cluster cannot increase 
faster than its size, i.e. that K ( i ,  j)/j is bounded as j+a. In the literature, certain 
homogeneous kernels with v >  1 have been quoted as a model for physical systems. 
For instance, Domilovskii et a1 claim that gradient coagulation in a turbulent stream 
is described by the following kernel: 

~ ( j , j ) = ( i I / 3 + j 1 / 3 ) 2 1 j 2 / 3 _ j 2 / 3 J .  ( 1 . 8 ~ )  

Secondly, Ziff (1980) quotes the following model for gravitationally attracting randomly 
distributed particles with a Maxwellian velocity distribution: 

~ ( j ,  j) = ( 0 ) 1 / 2 ( j + j ) 1 / 2 ( j 1 / 3 +  J .1 /3  1. (1.86) 

Both kernels ( 1 . 8 ~ )  and (1.86) have an exponent v =$> 1. In view of the above 
argument that K (  i, j)/j should be bounded as j + 03, such models cannot be considered 
as physically acceptable coagulation kernels. 

Our results are of interest for the following reasons. Firstly, they provide an answer 
to speculations in the literature about the possible occurrence of instantaneous gelation 
in Smoluchowski’s equation. Secondly, they reveal the structure of solutions of 
equation (1.1) for general homogeneous kernels with v > 1. Finally, our present results 
for v > 1, in combination with the results of van Dongen and Ernst (1985a, b, 1986a, b) 
for vs 1, show that Smoluchowski’s equation for different rate constants may describe 
three types of coagulating systems: (i)  non-gelling systems (t, = CD) if v s 1 and A s 1, 
(ii) gelling systems with O <  t,<m if v s 1 and h > 1, and (iii) systems showing 
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instantaneous gelation ( t ,=  0) if v >  1. Thus our results for v >  1 complement the 
previous work for v S 1. 

The layout of this paper is as follows. In P 2 we show for homogeneous reaction 
rates with v > 1 that pre-gel solutions of equation (1.1) d o  not exist, i.e. that such rate 
constants lead to gelation within infinitesimal time ( t ,  = 0). Next we investigate the 
structure of possible post-gel solutions of equation (1.1). This is done in 9 3. Finally 
we discuss our results ( 9  4). 

2. Instantaneous gelation 

In this section we show that Smoluchowski's equation predicts an  instantaneous 
gelation transition ( t ,  = 0), if the reactivity of relatively large clusters increases faster 
than their size ( v >  1). This is done as follows. In order to show that there exist no 
solutions of equation (1.1) that conserve the sol mass, we assume the opposite ( t c >  0) 
and we derive a contradiction. More precisely, we assume that, for some initial 
distribution c k ( 0 )  5 0, with X kck(0)  = 1, and some time interval O s  t < t , ,  there exists 
a (continuously differentiable) solution ck ( t )  of Smoluchowski's equation, with the 
property that the sol mass is conserved: M (  t )  = 1 for all t < t , .  

An important tool in our arguments are the moments M , ( t )  of the cluster size 
distribution, which are defined by 

The time dependence of M ,  ( t )  is described by the moment equations, which may be 
derived from equation (1.1) if both sides are multiplied by k" and summed over all k :  

0 2 J C  

& f a ( ? )  =$  c 1 ~ ( i ,  j ) c , ( t ) c , ( t ) [ ( i + j ) "  - i o  - j m ] .  (2.2) 
r = l  , = I  

In the derivation of equation (2.2) it is assumed that C k ( t )  falls off sufficiently fast as 
k + 03, such that all moments Ma ( t )  are finite. If this condition is not fulfilled, then 
(2.2) may not be valid for all values of a. This point is also discussed in § 4. 

This section is organised as follows. First we show (0 2.1) that the assumed 
conservation of sol mass for 0 s  t < t ,  implies that, during this time interval, c k (  t )  is 
exponentially bounded as k + W. It follows that all moments M ,  ( t )  are finite, so that 
the moment equations (2.2) are valid for all a <CO and all t < 1 , .  In 9 2.2 we show 
that at  any fixed time t > 0, the moment equations predict a divergence of some of the 
moments M a (  t ) ,  which is a contradiction. The conclusion is that the basic assumption, 
that sol mass conserving solutions exist for some time interval 0 s  t < t , ,  is incorrect. 

2.1. Finiteness of all moments (0 s t < tc)  

In order to show that the cluster size distribution c k ( t )  is exponentially bounded as 
k + 03, we derive first an  upper bound for the mass Idk ' (  t )  contained in clusters of 
size j 3 k, 
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It then follows from (2 .3)  that ck( t )  is bounded by 

which gives us the desired result. 
t ) ,  we remark that in (2.4) it has been tacitly 

assumed that ck( t )  3 0 for all k and for all t < t , ,  i.e. that solutions of Smoluchowski’s 
equation conserve positivity. Physically this is obvious. Mathematically it may be seen 
as follows. If we define 

Before deriving an inequality for 

X 

ai(t)E C K ( i , j ) c , ( O  

S, (  t )  == lor dt’  rf( t ’ )  

] = I  

then equation (1 .1)  may be formally integrated to yield 

( 2 . 5 ~ )  

(2 .5b)  

Since we assume that Ck(0) 3 0, it may readily be proved by induction that all factors 
on the right of (2.6) are non-negative, i.e. that for all t < t , ,  ck( t )  3 0. 

The desired inequality for M t k ) ( f )  may now be obtained from Smoluchowski’s 
equation in the form (1 .2) .  The assumption that for t < t ,  the sol mass is conserved, 
Z kCk = 0 ,  implies in combination with (1.2): 

k - 1  m 

n i ‘ k ’ ( t ) = J ( k - l ,  t ) =  c X ( i , j ) c , c , .  
I = I  I = k - i  

(2.7) 

The right-hand side of equation (2.7) may be estimated as follows. Since we have not 
specified the initial distribution ck(o), it may happen that some of the smaller polymers 
do not occur in the system. Let us assume that c,(O) = 0 for 1 1 - 1, but q ( 0 )  > 0. 
Since K ( I ,  j )  - P j ”  if j >> 1, on account of (1.5b), there must be some finite constant 
ko 3 1 + 1, such that for all j 

K ( I ,  j )  3 f P j ”  all j >  k, .  (2.8) 

j 

ko: 

Substitution of (2.8) into equation (2.7) shows that for k a  k,: 

~ ? ‘ ~ ’ ( t )  3 1 2 1 1 + F ~ , ( t )  j”c, 
( ] y k  ) 

3 a r c , ( r ) k ” - ’ M ‘ k ’ ( f )  k 3 ko (2 .9)  

Straightforward integration of equation (2.9) from time t to f ,  yields the following 
with a, = fl””. We have used that j ”  3 k”- ’ j  if j 3 k. 

inequality for Wk’ (  t ) :  

(2.10) 
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In the last step of (2.10) we have used that Mtk’(  t c )  is bounded from above by unity, 
i.e. 

(2.11) Wk’(tc) = Iim M k ) ( t )  s lim ~ ( t )  = 1 .  
t t f .  11 1, 

The notation t t t ,  indicates that in the limit t + t,, the gel point t ,  is approached from 
below. 

Equations (2.10) and (2.4) have, as an immediate consequence, that for all t < t , ,  
c k (  t )  is bounded by the following exponential: 

ck( t )  s k-’ exp( -ark’-’ 1,“ dt‘ C I (  t ’ ) )  k 3 ko. (2.12) 

It follows that, for t < t , ,  all moments M,(t)  are finite, and hence that the moment 
equations (2.2) are valid. 

We add the following remark. In order that (2.12) sets an exponential bound to 
c k (  t )  for all t < t,, it is essential that the 1-mer concentration c,( t )  is non-vanishing 
(0s t < r , ) .  To see that this is the case, consider equations ( 2 . 5 ~ )  and (2.5b). The 
existence of a well defined solution C k ( t )  of equation ( 1 . 1 )  requires that the integrals 
Si( t )  are finite for all t < t ,  and all i = 1 , 2 , .  . . . Thus we infer from equation ( 1 . 1 )  for 
k = 1 that cl( t )  is indeed non-vanishing for t < t,: 

c d t )  = C l ( 0 )  exP[-Sl(t)l>o o s  t < t , .  (2.13) 

In the derivation of (2.13) we have used the initial condition c j ( 0 )  = 0 ( j  c 1 - 1 ) .  

2.2. Instantaneous divergence of some moments ( t ,  = 0) 

In this section we use the moment equations (2.2) for integer values of a, 

f i n  =$x K( i , j )c ic j [ ( i+ j ) “ - in  -in] 
i.i 

(2.14) 

to obtain a lower bound m , ( t )  for the moment M , ( t ) .  We find that the lower bound 
diverges at some finite time t ,  > 0, with t ,  + 0 as n -+ 00. Since all moments M,( t )  are 
finite for t < t,, clearly t ,  sets an upper bound to the gel time t , ,  i.e. t,s t, for all 
values of n. The fact that t ,  vanishes as n -,a then shows that r ,=O.  

As a first step, we calculate a lower bound for the reaction rates K ( i ,  j )  in (2.14). 
We distinguish kernels with p 3 v and kernels with p < U. If p 2 v, the requirement 
(1.7) that K“’(i,  j )  is bounded from below implies, in combination with (1.6), 

( 2 . 1 5 ~ )  

where we have used that ( i  + j )  S 21j for all i , j  = 1,2,  . . . . Alternatively, if p < v, K (  i , j )  
is bounded from below by 

K ( i ,  j )  3 K ,  ( ij)@ ( i  + j ) ” - ”  2 2”-@K,( U)” p 3 v  

K ( i ,  j )  2 K , (  U)”( i + j ) ” -@ 2 K2(  ij)@ ( i ” - @  +j”-’ ) p s v  (2.15b) 

where we have introduced 

K2 = K,(max{l, 2’-”+@})-’.  ( 2 . 1 6 ~ )  
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Combination of equations (2 .15a)  and (2 .15b)  yields an expression for K(i , j ) ,  valid 
for all values of p and v: 

K ( i , j ) s K 2 ( i P j ” + j P i u )  (2.16b) 

where /? = min{p, v} and K 2  has been defined in ( 2 . 1 6 ~ ) .  

(2.14) gives an inequality in terms of moments only: 
Substitution of the lower bound ( 2 . 1 6 ~ )  and (2.166) into the moment equations 

(2.17) 

The next approximation is that we take into account only the terms for 1 = 1 and 1 = 2. 
If, moreover, we use that M2+@ 2 

hfl 2 K2Ml+p[nMn+v-I + h ( n  - 1)Mfl+v-21 n 3 3 .  (2.18) 

t )  is finite for O S  t < t,, we may transform to a new 

it follows from (2.17) for n 3 3 that 

Since, according to P 2.1, 
time variable r ( t ) ,  which is defined by 

T ( t )  = K 2  J dt’ M l + p ( t ’ ) .  
0 

(2.19) 

The result is 

d M , / d r a  n M , + , - , + t n ( n  - l ) M f l + v - 2  n 3 3 .  (2.20) 

A convenient starting point for further calculations is obtained if, in (2.20),  we 
reorganise the terms on the right, as follows: 

oc 
dM,,/drz~tnM,,+,-, + f n  2 k”b,,(k)c,  n s 3  (2.21a) 

b,( k )  = k”-’ + ( n  - l)k”-2.  (2.21 b )  

Thus the second term on the right in (2 .21a)  is a linear combination of both terms in 
the RHS of (2.20).  

In order to obtain an equation in terms of M , , ( r )  only, we use Jensen’s inequality 
to estimate the first term in the RHS of (2.21a).  If we define the average value of some 
function A ( k )  of the cluster size k by 

k = l  

oc 

E [ A ( k ) ] =  kA(k)Ck 
k = l  

(2.22a) 

then Jensen’s inequality (see e.g. Gradshteyn and Ryzhik 1980) states that for any 
non-negative function f( k )  and any convex function b(x) it holds that 

E [ d J ( f ( k ) ) l s  b ( E [ f ( k ) l ) .  (2.22b) 

As an immediate consequence we have 

Mn+v-l = E [ b ( k ” - I ) ] a  4 ( E [ k ” - ’ I ) = d J ( M n )  (2.23) 

provided that we choose $(x) = x ( ~ + ” - ~ ) ’ ( ” - ~ )  . This choice for $(x) is clearly convex, 
since v >  1 .  
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The second term on the right in (2.21a) may also be expressed in M,(T) ,  as follows. 
If Y 2 2, then 6,( k )  attains a minimum for k = 1, i.e. 6,( k )  3 6, = n. Alternatively, for 
1 < v < 2, the factor 6,( k )  diverges for small and for large values of k, and has a unique 
minimumb, =(k,,)"-'/(2- v)a tk ,=(2-  v ) ( n - l ) / ( v - l ) .  Thus,forallvaluesof v >  1, 
the function b , ( k )  is bounded from below by some constant b,, 

b , ( k )  2 6, all k = 1,2, .  . . ( 2 . 2 4 ~ )  

and the behaviour of the lower bound 6, for large values of n is given by 

6, = n U 2 2  

b , a n " - '  1 < v < 2 ;  n+co. (2.246) 

Substitution into (2.21a) of the inequalities (2.23) and (2.24a) finally gives an equation 
in terms of M, ( T )  only: 

dM,/dT 3 i n (  Mfl)(n+u-2)l(n-LJ + +nb,M, n 2 3 .  (2.25) 

Equation (2.25) is to be solved for general initial conditions M,(O). 

which is defined as the solution of (2.25) if the equal sign holds, i.e. 
The lower bound on M , ( T )  is determined as follows. Consider the function m,(T) 

dm,/dT = in(m,)("+Y-2)/("-l) + fnbnm,, m,(O) = Mfl(0). (2.26) 

Since the right-hand side of equation (2.25) is strictly positive for all T < T,= ~ ( t , ) ,  it 
follows that 

Mfl(7) 3 m,(.r)  o S T < T ,  (2.27) 

i.e. m,(T)  sets a lower bound to M , ( T ) .  The differential equation (2.26) for m,(T) is 
a special case of Bernoulli's differential equation (see e.g. Ince 1956). The method of 
solution is standard. We give only the result: 

m,(T)  = exp(n6,~/2){M,(O)-~ - [exp(yn6,~/2) - 1]/6fl}-L'y (2.28) 

where the exponent y is defined as y = ( Y - 1)/(  n - 1). 

the time T,, which is given by 
It follows from (2.27), in combination with (2.28), that M,(  7)  diverges at, or before, 

T,  = (ynb,/2)-' log( 1 + 6,M,(0)-Y). (2.29) 

Since all moments M ,  (7 )  are finite for T < T,, clearly T,  sets an upper bound to 7,. 

An upper bound on T,  independent of the initial conditions M,(O) is obtained if we 
use that for n 5 3, M,(O) 3 1, or M,(0)-y  s 1. 

The result is 

T,S T ,  (yn6,/2)-' log( 1 + 6,) + 0 n + W .  (2.30) 

The right-hand side of (2.30) vanishes as n +CO on account of the definition of y. This 
implies that T ,  = 0 or t ,  = 0 contradicting the assumption t ,  > 0 at the beginning of this 
section. We conclude that for v > 1, pre-gel solutions of Smoluchowski's equation do 
not exist. Physically this means that, irrespective of the initial condition, gelation 
occurs instantaneously. 
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3. Post-gel solutions 

We discuss briefly the structure of (post-gel) solutions of Smoluchowski's equation for 
homogeneous coagulation kernels with v >  1. We remark that, since t , = O  for such 
models, the epithet 'post-gel' is superfluous and  will be dropped from now on. Within 
the class of models with v > 1, exact solutions for general initial conditions are, to our 
knowledge, unknown. For this reason, our method will rest essentially on exact 
solutions for special initial conditions and on self-consistency arguments. 

First we recall the result of Hendriks et al (1982)  and of van Dongen and Ernst 
(1985b), that for all gelling models with v 6 1 ,  and also for a special case with Y > 1, 
namely, K (  i,  j )  = (U)*, Smoluchowski's equation allows an  exact post-gel solution of 
the form 

Ck(t)=Cl(f)bk t 2 t ,  ( 3 . l a )  

where bk is constant and c1( t )  falls off algebraically as t + 00. More precisely, 

C l ( [ )  = C l ( t C ) / [ l +  b ( [  - t J l .  ( 3 . l b )  

The parameter b in ( 3 . 1  b )  may be determined through substitution of ( 3 . 1 )  into equation 
(1.1) for k = 1 .  The result is b = c l ( t c ) E l ,  where in general Ek is defined as 

3i: 

E k =  c K ( k , j ) b J .  ( 3 . 2 )  
J = 1  

The solution ( 3 . 1 )  is consistent only if Ek <CO for all k. Furthermore, substitution of 
( 3 . 1 )  into Smoluchowski's equation in the form (1 .2 )  shows that the factors bk satisfy 
the following equation for all k 5 2 :  

El f j b J =  f i K ( i , j ) b l b ,  
J = l  i = l j = k - l + l  

( 3 . 3 )  

which is to be solved with the initial condition b ,  = 1 .  
In order to determine whether solutions of the form ( 3 . 1 ~ )  and ( 3 . l b )  are allowed 

also for v >  1 ,  we calculate the asymptotic behaviour of the solution bk of ( 3 . 3 ) .  
Following the method of van Dongen and Ernst (1985b) ,  we assume that the asymptotic 
behaviour of bk is of the form 

bk - Bk-' k + m .  (3 .4 )  
The requirement that at t ,  = 0, the sol mass is finite, i.e. M ( 0 )  = c,(O) Z,",l jb, = 1 implies 
that, necessarily, 7 >  2 .  Substitution of the ansatz (3 .4 )  into ( 3 . 3 1 ,  and approximation 
of the sum on the right of ( 3 . 3 )  by an integral, gives a consistent solution only if 

T =  ( A  + 3 ) / 2  
( 3 . 5 )  

where we have introduced the integral I ( r )  which is defined as 
X 

Z(7)-/c,1dx / 1-r dyxK(x,y)(xy)- ' .  (3.6) 

The requirement that for the value of 7 given in ( 3 . 5 )  the infinite sums EL should be 
finite, imposes the restriction p > ( Y - 1).  Under this condition, I (  7 )  is also finite. We 
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conclude that solutions of the form (3.1) are allowed for all models with v > 1, provided 
that p > ( v - 1). For the special model K( i, j )  = (U)*, which has p = v = 2, our results 
agree with the results of Hendriks et al. 

The exact solution (3.1) is of interest for two reasons. First, if p > ( v -  1) all 
solutions of equation (1.1) have the same asymptotic ( k  + CO) form as the exact solution. 
This may be seen from equation (1.2). As L + CO, the LHS of equation (1.2) approaches 
a constant value J(co, 1 )  = - & f ( t )  for all t > 0. I f  we assume that the cluster size 
distribution has the form 

c k  ( t ) - A ( t ) k - ‘ k + c o  (3.7a) 

then the right-hand side of (1.2) approaches a finite value only if T = ( A  +3)/2. 
Moreover, one finds that A ( t )  is related to the mass flux & f ( t )  by 

A( t )  = [ -&f( t ) / I (  T)]’” (3.7b) 

with I (  7) given by (3.6). Secondly, along the lines of van Dongen and Ernst (1985b), 
0 3, one may show that all solutions approach the exact solution as ( + C O ,  i.e. 

C k ( t ) / C I ( t ) +  b k  t+CO (3.8) 

provided, of course, c , ( O )  > 0 and p > ( v  - 1). This reveals the structure of the solutions 
of Smoluchowski’s equation for v > 1 and p > ( v - 1). 

We add a remark concerning possible solutions of equation (1.1) if p < ( v - 1 ) .  
For homogeneous kernels with p s ( v - 1 )  one may show (see the appendix) that 
solutions of equation (1.1) with a well defined mass flux from the sol to the gel do not 
exist. In this context, the mass flux at time t is well defined if the limit J (co ,  t )  = 
limL+m J(L,  t )  exists and J(co,  t )  <CO. It follows that either the mass flux J ( L ,  t )  does 
not converge as L +  CO, or alternatively J(co,  t )  =CO( t > 0). The former possibility can 
be excluded, since non-convergence of J(L,  t )  on some time interval t l  s t s f 2  implies 
that also the sol mass M (  t )  = 1 - J L  d t ’ J (m,  t ’ )  is not defined. The only remaining 
possibility, J(m, t )  = CO ( t  > 0) implies that for p s ( v - l ) ,  the system gels instan- 
taneously and completely, i.e. that c k (  t )  = 0 for all k and all t > 0. 

4. Summary and discussion 

We start with a summary of our results. We have investigated the structure of solutions 
of Smoluchowski’s coagulation equation for homogeneous coagulation kernels ( 1.5) 
with an exponent v > 1, i.e. for systems where the reactivity of large clusters increases 
faster than their size. As a first result, we have found that 

( i )  for all solutions of Smoluchowski’s equation, gelation occurs instantaneously 
( t ,  = 0). 

Next we have examined the structure of the (post-gel) solutions of equation (1.1) 
if v >  1. Our results are drastically different for coagulating kernels with an exponent 
p satisfying p > ( v  - 1) and for models with p S ( v  - 1). Our second result is that 

(i i)  if p > ( v  - l ) ,  the size distribution ck(  t )  has the form c k (  t )  - A (  t ) k - ‘ A + 3 ) ’ 2  as 
k + CO for all t > 0. The prefactor A( 1 )  is related to the mass flux from the sol to the 
gel: A( t )  a [-k( t ) ] ” * .  

For large times ( t  + CO) one finds that the ratio ck  ( t ) / c , (  t )  approaches a constant 
value bk > 0, independent of the initial conditions, with c I (  t )a  t-I as t +CO. There 



Instantaneous gelation in the Smoluchowski theory 1899 

exists also an exact solution of the form c k ( t )  = bkcl(r), with 
Alternatively, 

(iii) if p s ( v - I ) ,  solutions with a finite mass flux hi( t )  do 
This result suggests that in such models, gelation occurs 

completely, i.e. c k (  t )  = 0 for all t > 0. 

c l ( t ) = c l ( 0 ) / ( l + b t ) .  

not exist. 
instantaneously and 

Concerning the self-consistent arguments in 0 3, leading to (ii), we make the 
following proviso. The result (i)  implies that gelation occurs instantaneously for all 
initial distributions, provided that for such initial conditions Smoluchowski's equation 
has a solution. The existence of solutions for special initial distributions is demonstrated 
by the exact solution (3.1). However, the existence of solutions for general initial 
conditions has not been proved in this paper. Moreover, the method for obtaining the 
structure of solutions for t > O  is based on self-consistency and hence one cannot 
rigorously exclude the possibility of completely different behaviour. 

One of the implications of the present work is that the moment equations (2.2) for 
Mu( t )  are invalid for all t > 0 if a 3 1. In order to see this, we examine the derivation 
of equation (2.2) in some detail. If equation ( 1 . 1 )  is multiplied with k" and summed 
over all k S  L one finds the following result: 

where we have defined 
L a :  

J,(L, t ) =  i"K( i , j )c ic j .  (4.lb) 

If J ,  ( L ,  t )  + 0 as L + a, one obtains the usual expression (2.2) for the time evolution 
of Ma(?). For models with v >  1,  equations ( 4 . 1 ~ )  and (4.lb) have the following 
implications. We consider only kernels with p > ( v  - 1). In this case it follows from 
(ii)  that J,  (L, t )  a LU-'( L + a). As a consequence J, (L, t )  vanishes as L + 00 only if 
a < 1 and hence the moment equations are invalid if a 2 1 .  As an aside, we remark 
that the same argument applies for all gelling models with A > 1 and v s 1 .  In this 
case the moment equations for Mu (a 3 1) are invalid for all t > t,. 

In 0 1 it was mentioned that, assuming that the moment equations are correct, 
Hendriks et a1 (1982) and Ziff (1984) have studied the Taylor series of the second 
moment M2( t )  for K( i, j )  = ( ij)2. Numerically this series seems to diverge for all t > 0 
and these authors conjecture that gelation occurs instantaneously. The present paper 
shows that the moment equations are invalid, so that the observed divergence of M2( t )  
is not necessarily correct. In fact, M2( t )  remains finite for all t > 0, as may be seen 
from (ii) where A = 4 implies that ck( t)a k-"*. The conclusion of Hendriks er a1 and 
of Ziff, that gelation occurs instantaneously, is nonetheless correct. 

Next we discuss the relevance of Smoluchowski's equation (1.1) as a model for 
the coexistence of a sol and a gel phase. Smoluchowski's equation describes the 
interaction amongst finite-size clusters and the interaction between the sol and the gel 
is not taken into account. Therefore, one possible interpretation of equation (1.1) is 
that for some reason the gel is unreactive and another interpretation is that large 
clusters, say clusters larger than some size k,,  precipitate and disappear from the 
system. The latter model reduces to equation (1.1) in the limit k p - , a .  

In the presence of a reactive gel, Smoluchowski's equation would not necessarily 
give an appropriate description of the cluster size distribution. Qualitatively, this may 
be seen as follows. If we consider the gel as a set of large clusters, with size kG and 

i = l  j = L - i + l  
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concentration c G ,  then sol-gel interactions may be modelled by an  extra term on the 
right of equation ( l . l ) ,  of the form 

-k*(kG)”CkCG = - k ” ( k , ) ” - ’ c , G  (4.2) 

where G = k,cG = 1 - M represents the gel fraction, i.e. the fraction of all units con- 
tained in the gel. Since, in the Smoluchowski theory, the gel is identified with an 
infinite cluster ( ko = a), one finds from equation (4.2) that sol-gel interactions yield 
a finite, non-vanishing contribution to Smoluchowski’s equation only if v = 1. For 
v < 1, the gel term (4.2) is zero, implying that equation (1.1) gives the proper description 
of the combined sol-gel system, as was found by Spouge (1985). Finally for v > 1 the 
gel term is infinite, implying that in the presence of a reactive gel it would hold that 
d k ( f ) / C k ( f )  = --CO for t > t , .  Since in such systems a gel is formed instantaneously 
( t ,  = 0), it follows that ck( t )  = 0 for all t > 0, i.e. that for all positive times, the sol phase 
is empty. 

Next we discuss the relevance of our work for the computer experiments of 
Domilovskii et a1 and  Spouge. These authors have simulated the master equation for 
coagulating systems with a large but finite number of particles and  reaction rates 
K ( i ,  j) = with w > 1. Such systems differ from equation (1.1) in two respects. 
First, since the number of particles in the simulation is finite, the deterministic equation 
(1.1) gives only an  approximate description of the actual stochastic coagulation process. 
An exact description of finite systems is given only by the master equation (Spouge 
1985) for the probability P ( {  f l k } ,  t )  for the presence at time t of f l k  k-mers ( k  = 1,2, . . .). 
Secondly, since in the computer simulations also the largest clusters are reactive (no 
precipitation), these systems are qualitatively described by equation (1.1) with a term 
of the form (4.2) added. 

The implications from our work for the simulations of finite systems are the 
following. Firstly, it follows from our result ( i )  that, in the limit of an infinite system, 
the computer experiments would show an  instantaneous gelation transition. This can 
be seen as follows. In the pre-gel stage, the master equation may be expanded in 
powers of the inverse system size, and equation (1.1) is the dominant term in this 
expansion (for a review of the general method see van Kampen (1981)). The fact that 
the macroscopic law (1.1) does not allow sol mass conservation then implies that there 
is no  pre-gel stage, i.e. that t,=0. A second implication is that gelation, once it has 
occurred, is complete, i.e. that the sol phase is empty for all t > t,. This follows from 
the discussion around equation (4.2). Thus we conclude that the conjectures of 
Domilovskii er a1 and Spouge, stating that in their simulations for K (  i, j) = ( with 
w > 1, gelation occurs instantaneously and completely, are correct. 

As a final remark we add  that our present results are valid also for some non- 
homogeneous kernels. For instance, result (i),  derived in § 2, is valid for all reaction 
rates K ( i , j )  that can be bounded from below by a homogeneous coagulation kernel 
with v >  1, provided that the condition (1.61, (1.7) is fulfilled. Furthermore, the results 
of § 3 are valid, as a rule, if the kernel K ( i ,  j) is homogeneous at large cluster sizes, 
i.e. if the function +(i, j )  = lim,,,[a-*K(ai, aj)] is homogeneous with the properties 
(1.5)-(1.7). Our results are not necessarily valid if the condition (1.6), (1.7), that the 
reaction rates K ( i ,  j) are strictly positive, is not fulfilled. This condition excludes e.g. 
kernels with K (  i, i )  = 0, for which a monodisperse distribution is stationary. An 
interesting example is the kernel (1.8a), quoted by Domilovskii et a1 as a model for 
gradient coagulation in a turbulent stream. For a non-monodisperse initial distribution, 
these authors find that their estimate of the gel time slightly decreases as the system 
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size is increased. This suggests that for kernels with v > 1 and K (i, i )  = 0, as in (1.8a), 
instantaneous gelation may or may nor occur, depending on the initial conditions. 
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Appendix 

In this appendix we show for homogeneous coagulation kernels with Y >  1 and 
p s ( v  - 1) that Smoluchowski’s equation (1.1) does not allow for solutions with a 
finite mass flux from the sol to the gel. In order to prove that such solutions are 
forbidden, we show that the assumption that they exist is contradictory. 

In order to obtain a contradiction, we make the following assumption: that there 
exists, for some interval O s  ts t , ,  a solution c k ( t )  of equation (1.1) with Z kck(0) = 1, 
such that for all t > 0 the mass flux J( k, t ) ,  defined in (1.2), converges to a finite limit 
J ( a ,  t )  = -&f( t )  as k + a. From this assumption we infer (see below) that necessarily 
A ? ( t )  = 0, i.e. that the sol mass is conserved. However, according to 0 2, this is 
impossible. The conclusion therefore is that our assumption is wrong. 

We start with a few remarks. First, the finiteness of the mass flux J (  k, t )  requires 
that the infinite sum in (1.2), i.e. ut = K ( i ,  j)c,, is finite for all i. The finiteness of 
ui(t) is equivalent to the finiteness of M , ( t )  on account of (1.56). Furthermore, since 
we assume that p s ( v  - l ) ,  we infer also that MI+,(?) is finite: 

( A I )  

Our proof depends crucially on the finiteness of MI+,( t )  and Mu(  t ) .  The proof breaks 
down for models with p > ( v  - l ) ,  since in this case M,,, ( t )  = CO for all t > 0. A second 
remark is that it will be used repeatedly that c , ( t ) z O .  The non-negativity of c,(t) is 
obvious from (2.61, provided that ck(0) 3 0 for all values of k. The smallest cluster 
size for which ck(0) > 0 will be denoted by 1. It follows from (2.6) that cl (  t )  > 0 for all 
ts 1 , .  

Consider the mass flux J (k ,  t )  defined in (1.2). In order to construct an upper 
bound on J (  k, t ) ,  we separate the double sum on the right of (1.2) in two parts, one 
with j 3 k /2  and one with j < k/2,  as follows: 

J ( k ,  t ) ” Z , ( k ,  t ) + Z , ( k ,  t )  (A21 

M , + , ( t )  s M ” ( t )  < a o s  t s t ,  . 

with 

In the sum E,,, the summation indices (i, j) run over all possible values in the set A( n) ,  
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which is defined by 

A ( l )  = 11 s i s k ; j  5 max(k/2, k - i +  1)} 

A(2) = ((1 + k / 2 )  < is k; (k- i +  1) s j <  k / 2 } .  (‘44) 

In the sum C l  we have j 5 i /2 for all possible values of i and j .  Similarly, for Z2, one 
has j < i. Consequently it follows from the requirements (1.5)-( 1.7) imposed on the 
kernel K ( i , j )  that there exist finite constants C1 and C2 such that 

K ( i , j ) <  Cli’”j” i f ( i , j )EA,  

K ( i , j )  < C2iYJ.’” if (i, j) E A,. (AS) 

The inequalities (A5), in combination with (A3), enable us to calculate upper bounds 
on the value of the sums C I  and Z 2 .  

First consider the sum X I ,  defined in (A3). Substitution into (A3) of the inequality 
(A5) for ( i , j ) ~ A ,  shows that 

k m 

On the second line of (A6) we have used that for models with p S ( Y - l ) ,  the moments 
MI+, and M ,  are finite. Equation (A6) shows that the sum El(k, t )  vanishes as k+ 03. 

Next we consider the sum Z 2 ( k ,  t ) .  Insertion into (A3) of (AS) for ( i ,  j ) E  A*, and 
interchange of the summation order, gives 

io 

s c, 1 j@c,a( k, j )  
j = l  

where we have introduced 
k 

a ( k , j ) =  qi qi( t )  = i’+”C,( t ) .  
i = k - j + l  

In equation (AS) it is understood that a(k, j )  = a(k, k )  i f j >  k 
In order to obtain an upper bound on Z,(k, t )  for large k, we derive bounds on 

q i ( t )  and a(k ,  j ) .  The first step is to show that all q i ( t )  are bounded, i.e. that there 
exists some finite number u ( t )  such that 

i = 1 , 2 , .  . .. (A91 

This follows from (1.2), since the inequality J (  i, t )  3 iK(Z, i)clci  reduces for large values 
of i to qi( t )  s J ( a ,  t ) /Zpcr (  t ) .  Thus si( t )  is bounded for large i, implying that U( t )  = 
maxi { q i ( t ) }  is finite. 

Secondly, we show that a ( k , j )  must be arbitrarily small for certain values of k. 
More precisely: for any given S > 0 and any N < 00, we prove that there exists an 
infinite sequence {ku}, with k,+, > k,, such that 

q J t )  d U( t )  <a 

a ( k , ,  N ) s  s a = 1 , 2 , .  . .. (A101 
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To see this, assume that the statement is not correct. In that case there exists a number 
k o a  N such that for all k L k,: a ( k ,  N )  > S. It follows that for all k 3 ko: 

k k 

b(k ,  N ) =  j”cJ = q l / j a  k - ’ a ( k ,  N ) >  Sk-I. 
j = k - N + I  j = k - N + I  

This, however, implies that Mu =CO, in contradiction with (Al ) :  
m oc m 

M , s  k ” C k =  b ( k , + n N , N ) > S  ( k o + n N ) - ’ = c o .  

We conclude that the infinite sequence { k , } ,  with the property (AlO), exists. 
We are now in a position to calculate a n  upper bound on the sum &(k, ,  t ) .  

Combination of (A9) and (A10) gives an  upper bound for a ( k , , j )  in (A8), as follows: 

k = k . - N + I  n = O  n =O 

a ( k , , j ) s a ( k , ,  N ) s S  j s  N 

a ( k , j )  u ( c ) j  j >  N. ( A l l )  

Substitution of ( A l l )  into (A7) shows that 

Thus Z2(k*,  t )  is uniformly bounded for all a. 
Finally we show that J (  k, t )  vanishes as k + CO. Since we assume that for k + CO, 

J ( k ,  t )  converges to a finite limit J (co ,  t ) ,  we may choose k = k,  and take the limit 
Q +CO. Combination of (A2), (A6) and (A12) shows that for a +CO:  

Since, in (A13), the constant S may be chosen arbitrarily small and N may be chosen 
arbitrarily large it follows that necessarily J(w,  t )  = 0. In 0 2 we have shown that this 
is impossible. We conclude that the assumption made at the beginning of this appendix 
is incorrect. Apparently solutions of Smoluchowski’s equation with a finite mass flux 
from the sol to the gel d o  not exist if v > 1 and p S (I, - 1). 
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